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Abstract In this brief work, we shall obtain the general formulae for the enumeration
of the linear polycyclic aromatic hydrocarbons isomers when the hydrogen atom or
the CH group is substituted by one or more atoms or different groups (substitution
isomers). Such formulae have been derived from Redfield–Pólya’s Theorem (Burnside
in Theory of groups of finite order. Cambridge University Press, Cambridge, 1897;
Redfield in Am J Math 49:433, 1927) application.
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1 Introduction

Redfield–Pólya’s Theorem, also known as Pólya’s enumeration Theorem (PET), is a
generalisation of Cauchy–Frobenius–Burnside’s lemma [1] on the number of orbits
of a group action on a set. It was first published by Redfield [2], and 10 years later
it was independently rediscovered by Pólya [3], who also significantly diffused the
result by applying it to many counting problems, in particular to the enumeration of
chemical compounds. Redfield–Pólya’s Theorem application to the molecular com-
pounds isomers enumeration is based on the cycle index of a permutation group of a
finite set, that of molecular substitutions sites, which are transformed by the symmetry
operations of a molecular point group [3–8].

Products derived from coal or petroleum contain polycyclic aromatic hydrocarbons
(PAHs) as major components. Average descriptive parameters are usually obtained for
such materials; nevertheless, obtaining detailed compositional and structural informa-

E. Benassi (B)
Centro S3, CNR Istituto di Nanoscienze, Via G. Campi 213/a, 41125 Modena, Italy
e-mail: enrico.benassi@unimore.it

123



J Math Chem (2013) 51:2264–2270 2265

tion can be of crucial importance. Many of the PAH are known to express a remark-
able toxicity or mutagenic behaviour in various biological test systems. The toxic or
carcinogenic activity can be related to specific structures and positions of ring substi-
tution, as occurs in the cases of the isomers of methylphenanthrene, methylchrysene,
benzo[x]pyrenes and benzo[x]chrysenes [9–13]. The importance of disposing of an
univocal, correct and efficient identification of the isomers of PAHs is crucial also
in the field of the environmental sciences and green chemistry [14], for which the
detailed characterisation of such products is essential to obtain information about the
complex structure of fossil fuels such as coal, oil shale, and petroleum. The problem
of enumerating naphthalene and anthracene isomers is a classical problem, which has
been originally discussed by Pólya himself [15]. In the early 80s, Dias [16] applied the
graph theory concepts [17–19] for the enumeration of the PAH isomers obtained by
different collections of regular hexagons arranged with adjacent sides. In this paper, we
are interest into obtaining the general formulae for the enumeration of the substitution
isomers of linear PAHs, by using the group theory derivations.

Let G = {gi }i=1,2,...,� be the molecular point group of order �, and let D =
{d j } j=1,2,...,� the domain given by the set of the � substitutional sites of the molecule,
where � is a sum of divisors of �. Moreover, let P(gk, D) be the set of all the dis-
tinct permutations, that forms a permutation group P(G, D) = {P(gk, D)}k=1,2,...,γ

of order γ ≤ �. Such an action is a homomorphism from G to P(G, D). Since
P(G, D) ⊂ S�, from Lagrange’s Theorem it follows that γ is a divisor of �!. Each per-
mutation pk = P(gk, D) may be expressed as a product of disjoint cycles

∏�
j=1 x

ε jp
j ,

where ε jp indicates the number of cycles of degree j in the permutation p ∈ P(G, D),
and thus the cycle index of the permutation group P(G, D) may be written as the fol-
lowing arithmetical mean:

Z (P(G, D)) = 1

γ

∑

p∈P(G,D)

�∏

j=1

x
ε jp
j = 1

γ

r∑

l=1

hl

�∏

j=1

x
ε jl
j , (1.1)

where the first sum runs over all the γ permutations, and the second sum runs over
all the r permutation classes of P(G, D), hl is the number of permutations of lth
class (

∑r
l=1 hl = γ ), and the exponent ε jl is the number of cycles of degree j in the

permutations of the lth class (
∑�

j=1 jε jl = �). Exploiting some previous results [20],
Baraldi et al. [8] obtained the formula:

Z (P(Dn, D)) = xn(Cn)
1

2n

∑

k|n
ϕ(k)x (�−n(Cn))/k

k

+
{

1
2 xn(C2)

1 x (�−n(C2))/2
2 (nodd)

1
4

[
xn(C2)

1 x (�−n(C2))/2
2 + x

n(C ′
2)

1 x
�−n(C ′

2)/2
2

]
(neven)

,

(1.2)

where ϕ(k) is Euler’s function, which determines the number of positive integers ≤ k
which are coprime to k.
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Naphthalene (n = 2) Anthracene (n = 3)

C2 C2

Fig. 1 Examples of even- (left) and odd-n (right) PAHs. One of the three C2 axes is pictured

2 How to obtain the general formulae for the enumeration of the linear PAHs
substitution isomers

The general molecular formula for PAHs is C4n+2H2n+4, where n is the number of
fused benzene rings. Their point group is D2h = {E, 3C2 i, 3σv}, but for the isomers
enumeration considering the sub-group of the proper rotations D2 = {E, 3C2} is
enough [5]. The sites available for the substitution that lead to the isomers formation
are the positions occupied by the hydrogen atoms in these hydrocarbons. The odd-n
PAHs (e.g., the anthracene, n = 3) have two sites over a C2 axis, while the even-n
PAHs (e.g., naphthalene, n = 2) have no substitution site over the C2 axes (Fig. 1).
This origins a different cyclic structure of the 2n + 4 sites permutations in the two
PAHs classes.

To apply Pólya’s Theorem, it is needed to identify the cyclic structure of the per-
mutation classes corresponding to the permutations of the active sites set connected
to the symmetry operation of the point group. To each permutation class, a term of
the cycles index is associated. If we symbolise a m-length cycle with (••• · · · •)

︸ ︷︷ ︸
(m)

, for

the even-n PAHs, the permutation classes are two, and they have the following cyclic
structure:

(•)(•) · · · (•)
︸ ︷︷ ︸

(2n+4)

for the identity permutation, and:

(••)(••) · · · (••)
︸ ︷︷ ︸

(n+2)

for the permutations corresponding to the C2 operations. Therefore, the associated
cycles index is:

Z(D2, x1, x2) = 1

4

(
x2n+4

1 + 3xn+2
2

)
, (even n) (2.1)
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where x1 and x2 indicate the fictitious (or undetermined) variable associated to the
cycle (•) and (••), respectively. (In general, xm indicates the fictitious (or unde-
termined) variable associated to the m-length cycle.) The power of these variables
coincides with the number of same kind cycles that appear in the permutation, and
the number that multiply them is the number of permutations of that class. In the case
of odd-n PAHs, the cyclic structure of the three permutations corresponding to the
C2 operations is not the same anymore. Two of them show the previously analysed
shape, and one (that corresponding to the two sites over a C2 axis) has the following
structure:

(•)(•) (••)(••) · · · (••)
︸ ︷︷ ︸

(n+1)

,

that gives rise to an additional class. Therefore, the cycles index for the odd-n PAHs
is:

Z(D2, x1, x2) = 1

4

(
x2n+4

1 + x2
1 xn+1

2 + 2xn+2
2

)
. (odd n) (2.2)

For the examples reported in Fig. 1, the formulae (2.1) and (2.2) becomes:

Z(D2, x1, x2) = 1

4

(
x8

1 + 3x4
2

)
, (naphthalene, n = 2) (2.3)

Z(D2, x1, x2) = 1

4

(
x10

1 + x2
1 x4

2 + 2x5
2

)
, (anthracene, n = 3) (2.4)

that are known results [2].
Now, if we want to enumerate the isomers that are obtained when one site may be

occupied by p atoms or groups different from each other, the following substitution
is required:

xi = r i + si + t i + · · · + zi
︸ ︷︷ ︸

(p)

, (2.5)

where the right member is called figures counting series. Inserting (2.5) into (2.1) and
(2.2), we obtain the counting polynomial for the PAHs substitution isomers, i.e.:

Z
(

D2, (r + s + t + · · · + z), (r2 + s2 + t2 + · · · + z2)
)

= 1

4

[
(r + s + t + · · · + z)2n+4 + 3(r2 + s2 + t2 + · · · + z2)n+2

]
, (even n)

Z (e) = 1

4

⎡

⎢
⎣

⎛

⎝
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α j
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⎛

⎝
p∑
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j

⎞

⎠

n+2
⎤

⎥
⎦ (2.6)

Z
(

D2, (r + s + t + · · · + z), (r2 + s2 + t2 + · · · + z2)
)
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= 1

4

[
(r +s+t+· · ·+z)2n+4+(r +s+t+· · ·+z)2(r2+s2+t2+· · ·+z2)n+1

+2(r2 + s2 + t2 + · · · + z2)n+2
]

Z (o) = Z (e) + 1

2

⎛

⎝
p∑

j=1

α2
j

⎞

⎠

n+1
p∑

j=1

α jαk> j (odd n) (2.7)

To count the total number of isomers, connected to the substitution (2.5), it is needed
to put xi = p into (2.1) and (2.2). So we have:

Z(D2, p, p) = 1

4

(
p2n+4 + 3pn+2

)
= pn+2

4

(
pn+2 + 3

)
, (even n) (2.8)

Z(D2, p, p) = 1

4

(
p2n+4 + pn+3 + 2pn+2

)
= pn+2

4

(
pn+2 + p + 2

)
. (odd n)

(2.9)

Table 1 collects the total number and the counting polynomials of the isomers,
p = 2 for and n = 2–7. The counting polynomial of the isomers may be interpreted
as follows. In case one site may be occupied by a H atom (r ) or another X atom
(s) in naphthalene, we have a single isomer C10H8(r8) and C10X8(s8), 2 isomers
C10H7X(r7s) and C10HX7(rs7), 10 isomers C10H6X2(r6s2) and C10H2X6(r2s6), 14
isomers C10H5X3(r5s3) and C10H3X5(r3s5), and 22 isomers C10H4X4(r4s4). The
other counting polynomials may be analogously interpreted. The total number of
isomers coincides with the sum of the coefficients of the counting polynomial terms.
The results concerning the cases of n = 2 (naphthalene) and 3 (anthracene) are
equivalent to those reported by Pólya [15] although he does not provide the number of
isomers when the sites are occupied by more than 4× atoms in the case of anthracene.

As an example of triple substitution (xi = r i + si + t i ), we shall consider naph-
thalene. The Eq. (2.6) reduces to the following polynomial:

Z
(

D2, (r + s + t), (r2 + s2 + t2)
)

= (r8 + s8 + t8) + 2(r7s + r7t + st7 + rs7 + s7t + r t7)

+10(r6s2 + r2s6 + r6t2 + s6t2 + r2s6 + s2t6)

+14(r5s3 + r3s5 + r5t3 + s5t3 + r3s5 + s3t5)

+22(r4s4 + r4t4 + s4t4) + 14(r6st + rs6t + rst6)

+42(r5s2t + r2s5t + r5st2 + rs5t2 + r2st5 + rs2t5)

+70(r4s3t + r3s4t + r4st3 + rs4t3 + r3st4 + rs3t4)

+114(r4s2t2 + r2s4t2 + r2s2t4)

+140(r3s3t2 + r3s2t3 + r2s3t3). (2.10)

The total number of the isomer is 1,701, coinciding with the sum of the coefficients
of (2.10). Also in this case, our results generalise those found by Pólya [15].
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Table 1 Total number of isomers and counting polynomial of the isomers for the first six linear PAHs,
when the hydrogen atoms substituted with another atom or group

Moleculesa Total number of isomers Counting polynomial of the isomers

Naphthalene (n = 2)76 (r8 + s8) + 2(r7s + rs7) + 10(r6s2 + r2s6) +
14(r5s3 + r3s5) + 22r4s4

Anthracene (n = 3) 288 (r10 + s10) + 3(r9s + rs9) + 15(r8s2 + r2s8) +
32(r7s3 + r3s7) + 60(r6s4 + r4s6) + 66r5s5

Tetracene (n = 4) 1,072 (r12 + s12) + 3(r11s + rs11) + 21(r10s2 +
r2s10) + 55(r9s3 + r3s9) + 135(r8s4 + r4s8) +
198(r7s5 + r5s7) + 246r6s6

Pentacene (n = 5) 4,224 (r14 + s14)+4(r13s +rs13)+28(r12s2 +r2s12)+
94(r11s3 + r3s11) + 266(r10s4 + r4s10) +
508(r9s5 + r5s9) + 777(r8s6 + r6s8) + 868r7s7

Hexacene (n = 6) 16,576 (r16 + s16) + 4(r15s + rs15) + 36(r14s2 + r2s14) +
140(r13s3 + r3s13) + 476(r12s4 +
r4s12)+ 1,092(r11s5 + r5s11)+ 2,044(r10s6 +
r6s10)+ 2,860(r9s7 + r7s9) + 3270r8s8

Heptacene (n = 7) 66,048 (r18 + s18) + 5(r17s + rs17) + 45(r16s2 + r2s16) +
208(r15s3 + r3s15) + 792(r14s4 +
r4s14)+ 2,156(r13s5 + r5s13)+ 4,074(r12s6 +
r6s12)+ 7,984(r11s7 + r7s11)+ 11,034(r10s8 +
r8s10)+ 12,190r9s9

a The last members are very reactive. The superior acenes are not stable

3 Conclusions

In this work, we have obtained the general and simple formulae for the enumeration
of the linear PAHs isomers when the Hydrogen atom or the CH group is substituted by
one or more atoms or different groups (substitution isomers). Such formulae have been
obtained through Redfield–Pólya’s Theorem application, considering the molecular
symmetry. The general molecular formula for PAHs is C4n+2H2n+4, where n is the
number of fused benzene rings, and their point group is D2h = {E, 3C2 , i , 3σv},
but for the isomers enumeration considering the sub-group of the proper rotations
D2 = {E, 3C2} suffices. Since the odd-n PAHs have two sites over a C2 axis, while
the even-n PAHs have no substitution site over the C2 axes, a different cyclic structure
of the 2n+4 sites permutations in the two PAHs classes is originated. The total number
of non-equivalent substitution isomers is 76, 288, 1,072, 4,224, 16,576, and 6,648 for
naphthalene, anthracene, tetracene, pentacene, hexacene, and heptacene respectively.
The results obtained for naphthalene and anthracene generalise those achieved by
Pólya [15].
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